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ABSTRACT: Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) 
techniques were applied in a unified approach to wind tunnel testing of slender wing and missile 
configurations dominated by vortex flows and shock waves at subsonic, transonic, and 
supersonic speeds.  The off-surface cross-flow patterns using the LVS technique were combined 
with global PSP surface static pressure mappings to characterize the leading-edge vortices and 
shock waves that coexist and interact at high angles of attack (α).  The synthesis of LVS and 
PSP techniques was also effective in identifying the significant effects of passive surface porosity 
and the presence of vertical tail surfaces on the flow topologies.  An overview is given of LVS 
and PSP applications in selected experiments on small-scale models of generic slender wing and 
missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind 
Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT). 

1 General Introduction  

The understanding and control of leading-edge vortex flows, shock waves, mutual interactions of 
vortices and shock waves, and flow-field interactions with airframe components is a continuing 
challenge for designers of modern military and commercial aircraft and missile configurations.  Wind 
tunnel testing is a primary means of visualizing and quantifying the aerodynamic characteristics of 
advanced aerospace vehicle configurations at subsonic, transonic, and supersonic speeds.  A multitude 
of test techniques exist to examine the on-surface and off-surface flow field characteristics, many of 
which feature optical methods that are well-suited to reveal the complexities of vortex- and shock 
wave-dominated flow fields in the subsonic through supersonic speed regimes.  The LVS flow 
visualization method [1] was used in selected experiments described in this paper to illuminate the 
cross-flow patterns about slender wing and missile models.  The off-surface flow visualization results 
were combined with global surface static pressure response maps using the PSP technique [1].  
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Previous experience [2]-[4] indicates that the LVS and PSP techniques are complementary, since each 
technique affords new insights or corroborative findings regarding the physics of the vortex flows and 
shock waves that form on slender wing and slender body configurations.  The application of the two 
techniques is mutually exclusive, however, because of competing light sources and locations for the 
LVS and PSP optical components, different model surface preparations, and wind tunnel test condition 
requirements.  Consequently, the two techniques were applied in separate phases of the selected 
experiments, which required appropriate planning and efficient use of wind tunnel facility resources.  
Representative results obtained on three selected configurations in separate experiments are presented 
in this paper.   One experiment was conducted in the NASA LaRC UPWT using a 65-degree cropped 
delta wing model with leading-edge extension (LEX) and centerline and twin, wing-mounted vertical 
tails.  The LEX was tested with and without passive surface porosity for vortex control. Two 
experiments were performed in the NASA LaRC 8-Foot TPT using a double-delta wing model 
featuring a 76o/40o strake-wing planform and a faceted missile model with chine-like cross sections.  
Detailed discussions of the results obtained in the UPWT and 8-Foot TPT testing of the cropped delta 
wing-LEX, double delta wing, and faceted missile models are provided in [2], [3], and [4], 
respectively.  

2 Flow Visualization and Measurement Techniques  

2.1 Laser Vapor Screen  
The vapor screen method of flow visualization has been used in wind tunnel testing for several decades 
to visualize vortices, vortex sheets, lines of flow separation and reattachment, and shock waves at 
subsonic, transonic, and supersonic speeds.  Water is injected into the wind tunnel circuit in a 
controlled manner and in sufficient quantity to promote condensation of water vapor in the test section.  
A laser is often used to produce an intense sheet of light that is projected into the test section typically 
in a plane perpendicular to the longitudinal axis of the tunnel or to the body axis of the model.  At 
supersonic speeds, the temperature drop from the expansion in the supersonic nozzle causes the water 
vapor to condense into a thin, uniformly-distributed fog.  The distribution of condensed water vapor 
and, consequently, the amount of scattered light within the plane of the light sheet, is affected by the 
flow disturbances created by the model.  This phenomenon permits the observation and documentation 
of vortex cross sections, for example, at high angles of attack.  Condensation first appears in the free 
stream at supersonic speeds, so that vortex flows appear as dark regions in the absence of scattered 
light surrounded by a light background.  The change in flow density through oblique shock waves 
results in a similar change in fog density so that shock positions and shapes are often clearly defined.  
Separated flows such as wakes, vortex feeding sheets, and vortex core regions appear as dark or 
transparent, since condensate does not appear to be convected across the shear lines.  At subsonic and 
transonic speeds, the condensed water vapor generally appears near the central region of the vortices, 
so the vortex cross sections appear as light regions within a darker background.  A combination of the 
two light-scattering patterns often occurs at transonic speeds.  LVS results are considered qualitative, 
although relative positions, sizes, and shapes of vortices and shock waves can be extracted from the 
vapor screen images, as desired.  The appearance of condensation in the test section will affect the free-
stream flow characteristics and the quantitative measurements of the model surface pressures and 
forces and moments [1].   Condensation at supersonic speeds is accompanied by a stagnation pressure 
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loss and a decrease in the Mach number at the condensation shock [1].  Interpretations of the vapor 
screen images are still valid, however, and effective correlations can be made with the trends observed 
in quantitative model measurements such as surface static pressure distributions and six-component 
forces and moments. The LVS systems that were used in the NASA LaRC UPWT and 8-Foot TPT are 
described in [2]-[4].  The LVS images that are presented in this paper are digitized frames acquired 
from a personal computer video capture board connected to a miniature camera installed inside the test 
section on the model support system [1].  

2.2 Pressure Sensitive Paint 

PSP is a global optical surface static pressure measurement technique that is based on the oxygen-
quenching characteristics of certain luminescent materials.  The emitted light intensity varies inversely 
with the local oxygen partial pressure and, therefore, the air pressure, since oxygen is a fixed mole 
fraction of air.  The key elements of a PSP system include photoluminescent material in the form of a 
paint applied to the test article, illumination source to excite the paint, imaging device such as a 
scientific-grade digital camera to document the paint in the excited state, and an image acquisition and 
processing system.  An in-situ global calibration method was used in the NASA LaRC wind tunnels to 
calibrate the PSP.  Specifically, pressure measurements were obtained at several discrete pressure tap 
locations on the model surfaces using an electronically-scanned pressure (ESP) measurement system, 
and the PSP intensity was calibrated from the pressure tap data at spatially corresponding locations.  
Every pixel in the painted portion of a PSP digital image is effectively a pressure tap, so the pressure 
distributions can be resolved to much greater detail in all applicable regions of the model.  Similar to 
surface oil flow visualization, color-coded images depicting the calibrated PSP intensity field response  
(that is, the surface pressure response) provide pertinent information on the topology of the vortex 
flows and shock waves that induce the corresponding pressure distributions.  The potential intrusive 
effects of the PSP on the aerodynamic characteristics can be controlled by minimizing the paint 
thickness and surface roughness.  An assessment of PSP intrusiveness on the aerodynamic flow about 
selected models at subsonic through supersonic speeds is provided in [5].  The PSP systems used in the 
NASA LaRC UPWT and 8-Foot TPT are also described in [2]-[4].   

3 Wind Tunnel Facilities and Test Conditions 

3.1 NASA LaRC UPWT  

The NASA LaRC UPWT is a continuous-flow, variable-pressure supersonic wind tunnel.  The tunnel 
contains two test sections which are approximately 4 feet square and 7 feet long.  Each test section 
encompasses only part of the Mach number (M) range of the tunnel.  The nozzle ahead of each test 
section consists of an asymmetric sliding block which allows continuous Mach number variation 
during tunnel operation from 1.5 to 2.86 in the low Mach number test section and 2.3 to 4.63 in the 
high Mach number test section.  A complete description of the facility is contained in [6]. 
 
The experiment using the 65-degree cropped delta wing-LEX model was performed in UPWT Test 
Section 1 at free-stream Mach numbers of 1.6 and 2.1, a Reynolds number of 2.0 million per foot, and a 
stagnation temperature of 120 degrees Fahrenheit (deg F).  Optical access to the test section is through 
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a series of windows in the side walls.  This required the model to be rolled to a wings-vertical position 
for the PSP phase of the experiment.  Mechanical operation of the model support system in the yaw 
plane constrained the angle of attack to a maximum of approximately 8 degrees.  The model was tested 
in the upright orientation for the LVS phase of the testing, which afforded an increased range of angle 
of attack using the standard pitch mechanism. 

3.2 NASA LaRC 8-Foot TPT 
The NASA LaRC 8-Foot TPT was designed for operation as a continuous-flow, closed-return, 
variable-pressure wind tunnel with control capability to independently vary Mach number, stagnation 
pressure, stagnation temperature, and humidity.  The test section was square with corner fillets and a 
cross-sectional area approximately equivalent to that of an 8-foot diameter circle.  The top and bottom 
walls of the test section were axially slotted to permit a continuous variation of the test section Mach 
number from 0.2 to 1.2.  A detailed description of the 8-Foot TPT is provided in [7].  
 
The testing of the double delta wing model was conducted at free-stream Mach numbers of 0.50, 0.85, 
and 1.20, a Reynolds number of 2.0 million per foot, and a stagnation temperature of 80 deg F.  The 
testing of the faceted missile model was also performed in the 8-Foot TPT at free-stream Mach 
numbers of 0.90 and 1.20, a Reynolds number of 3.0 million per foot, and a stagnation temperature of 
120 deg F.  Optical access through a window positioned along the test section ceiling allowed testing of 
the models in the upright orientation for the LVS and PSP phases of the experiments.  This provided 
the full range of angle of attack using the arc sector model support system. 

4 Model Descriptions 

4.1  Generic 65-Degree Cropped Delta Wing-LEX 

A generic fighter model featuring a 65-degree cropped delta wing with sharp leading edges was used in 
the UPWT testing.  The model was designed and fabricated for surface pressure and force and moment 
testing in subsonic, transonic, and supersonic wind tunnels.  The wing had an NACA 64A005 airfoil 
section from the 40-percent chord station to the trailing edge.  A sharp leading edge was obtained by 
fairing a biconvex circular-arc section into the NACA profile from the 40-percent chord station to the 
wing leading edge.  The wing was mounted in a high position on a fuselage that served as a housing for 
balance and pressure instrumentation.  The model was modified to include a wing LEX mounted to an 
integral strut or ‘gooseneck,’ a centerline vertical tail, and twin vertical tails on the wings.  A flat-plate, 
0.25-inch thick LEX having a 65o/90o planform and symmetrically-beveled leading edges was 
fabricated for this experiment.  The exposed area of the LEX (left and right sides) was 15 percent of the 
reference wing area.  The LEX incorporated a pattern of 0.05-inch diameter through-holes spaced 0.10-
inch apart on center to provide a total porosity level of 14.75 percent relative to the LEX exposed area.  
The objective of this passive porosity concept was to control the strength of the LEX vortices and their 
interaction with the wing vortex flows for improved high angle-of-attack aerodynamics. The same LEX 
was tested with 0 percent porosity (solid LEX) by applying sealing tape having 1.8 mil thickness 
(0.0018 inches) along the lower surface to cover all of the through holes.  The model with porous LEX, 
wing, and twin wing-mounted vertical tails is shown installed in UPWT Test Section 1 in fig. 1.  A 



 

ISFV13 / FLUVISU12 – Nice / France – 2008 

UNIFIED APPLICATION OF VAPOR SCREEN FLOW VISUALIZATION AND PRESSURE SENSITIVE PAINT 
MEASUREMENT TECHNIQUES TO VORTEX- AND SHOCK WAVE-DOMINATED FLOW FIELDS 

5

photograph of the model rolled 90 degrees in preparation for PSP testing is also shown in fig. 1. 
Planview and sideview sketches of the wing, LEX, fuselage, and tails are provided in fig. 2.  The right 
wing upper surface was instrumented with a total of 45 pressure orifices distributed in three spanwise 
rows.  The pressure rows were located at 30 percent, 60 percent, and 80 percent of the distance, x, 
along the wing centerline chord, c, measured from the apex of the wing (x/c = 0.30, 0.60, and 0.80).  
The orifice nondimensional semispan location, y/s, is expressed in terms of the semispan distance, y, 
measured from the wing centerline divided by the wing local semispan, s.  Consequently, y/s values of 
0.0 and 1.0 correspond to the wing centerline and the right wing leading edge, respectively.   The 
pressure orifices were connected to an internal ESP module with purge air capability, which allowed air 
to be routed through the orifices during the application of the PSP coating.  This avoided having to 
mask off the pressure rows during the painting process.   

4.2 Generic Double Delta Wing 

The generic double delta wing model tested in the 8-Foot TPT was also designed and fabricated for 
surface pressure and force and moment testing in subsonic, transonic, and supersonic wind tunnel 
facilities.  The 0.375-inch-thick wing featured a flat upper surface and sharp, beveled leading, side, and 
trailing edges.  The leading-edge sweep angles of the highly-swept forward section, or strake, and the 
main wing panel were 76o and 40o, respectively.  A fiberglass housing was attached to the lower 
surface of the wing and served as a protective cover for the ESP and balance instrumentation.  
Photographs of the double delta wing installed in the 8-Foot TPT test section are presented in fig. 3 and 
correspond to the unpainted model and the model with PSP coating applied.  Both photographs show  
the model with modified strake-wing intersections, or fillets [3], which are not discussed in this paper.  
The planview and sideview sketches in fig. 4 show the dimensional details of the model.  The model 
incorporated a total of 47 static pressure orifices distributed in three spanwise rows on the wing upper 
surface.  The three rows were on the left-hand side of the wing at nondimensional axial positions of   
x/c = 0.25, 0.75, and 0.90, which correspond, respectively, to 25 percent, 75 percent, and 90 percent of 
the distance, x, measured from the strake apex along the model centerline chord, c.  The orifice 
nondimensional semispan location, y/s, is defined in the same manner as the 65-degree cropped delta 
wing model.  Consequently, y/s values of 0.0 and -1.0 correspond to the wing centerline and the left 
wing leading edge, respectively.  The pressure orifices were connected to a standard ESP module 
without purge air capability.  Consequently, the pressure rows were masked off during the PSP coating 
application.  These regions appear as unpainted strips in the processed PSP images. 

4.3 Faceted Missile 

The faceted missile model tested in the 8-Foot TPT was a 30-percent-scale slender lifting body 
representation of a proposed missile concept.  The model was designed for the dual purpose of pressure 
and force and moment measurements, and it was compatible with testing in subsonic, transonic, and 
supersonic wind tunnels.  The body was faceted and featured chine-like cross sections with sharp 
leading edges.  Fig. 5 presents selected wind tunnel installation photographs of the missile model, 
which include the model unpainted and with PSP coating applied to the upper surface.  Overall 
dimensions of the missile configuration are shown in fig. 6.  The model top and side views and cross 
sections can generally be described as diamond shapes.  The model had an expanding cross section 
forebody, a transitional region, and an aftbody with contracting cross section.  The development of 
vortex flows from the sharp leading edges was expected.  It was also anticipated that the flow field over 
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the model would exhibit asymmetries at sufficiently high angles of attack because of the slenderness of 
the model and the possible development of multiple vortices arising from the discontinuities in the 
model planform and changes in the cross-sectional shape along the length of the model.  ESP pressures 
were measured at selected stations by full rings of orifices.  In terms of the local semispan, pressure 
orifices were placed at the body centerline (0 percent semispan) and in 5-percent increments to 95 
percent semispan.  The model length was 36 inches, and the pressure rings were located at model 
stations (M.S.) 9.0, 20.50, 25.50, 30.00, and 34.50 inches.  This arrangement provided one ring on the 
forebody (M.S. 9.00), one ring on the transition region (M.S. 20.40), and three rings on the aftbody 
(M.S. 25.50, 30.00, and 34.50).  The pressure orifices were connected to standard ESP modules 
installed inside the model.  Similar to the double delta wing model, the pressure rows were masked off 
during the application of the PSP coating, and the pressure rows appear as unpainted strips in the PSP 
images.  The field-of-view that was selected for the PSP testing was the model upper surface and 
included the pressure measurement stations at M.S. 20.40, 25.50, and 30.00.  The ESP measurements 
and LVS flow visualization results shown in this paper correspond to these model stations.   

5 Discussion of Results 

5.1 Generic 65-Degree Cropped Delta Wing-LEX 
Fig. 7 presents PSP and LVS results obtained on the 65-degree cropped delta wing model with solid 
LEX and porous LEX at M = 1.6 and α = 8o.   The false-colored PSP images at the top of fig. 7 show 
the wing upper surface pressure response.  The LEX was unpainted and, therefore, is not visible in the 
PSP images, which have undergone registration, ratioing, and resection transform [1].  Image 
registration marks (small black circles) are visible in the PSP images.  The model fastener holes were 
initially filled with automotive putty, and these holes are also visible as larger dark circles through the 
PSP coating.  The holes were filled with dental plaster prior to repeat applications of the PSP, which 
eliminated the appearance of the fastener holes in the processed images. A color bar indicates that 
green, blue, and purple correspond to regions of progressively lower pressure (that is, higher suction 
pressures), with purple representing the highest suction pressure levels.  Regions of higher surface 
pressure (lower suction pressures or slightly positive pressures) are represented by shades of yellow, 
red, and pink.  The LVS images for each configuration are shown directly below the corresponding 
PSP image, and they depict the condensation patterns in cross sections at approximately 60 percent, 80 
percent, and 100 percent of the distance along the wing centerline chord measured from the wing apex 
(x/c = 0.60, 0.80, and 1.00, respectively).  The three x/c stations are identified as red dashed lines in the 
PSP images, and the x/c = 0.60 and x/c = 0.80 stations are locations at which discrete spanwise surface 
static pressure measurements were acquired along the right wing upper surface using the ESP method.   
The x/c = 1.00 station is at the wing trailing edge.  The left portion of the LVS image at x/c = 1.00 is in 
the shadow of the centerline tail, since the laser light sheet was projected into the test section through a 
window in the right-hand wall.  The LVS images are scaled relative to each other to reflect the growth 
of the vortices from the forward to aft portions of the wing.  The LVS images are also approximately 
scaled relative to the PSP images so that the vortex cross sections in the LVS images can be projected 
to the corresponding regions of higher suction pressures in the PSP images.  Important features of the 
PSP and LVS images are identified with numbers, and a descriptive key is provided in the figure.  The 
location of the LEX-wing junction is also denoted. 
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The PSP image obtained with the solid LEX in fig. 7 reveals subtle pressure signatures induced by the 
LEX vortices and denoted by narrow bands of dark green/light blue colors extending in a nearly 
streamwise direction along the wing.  There is a region of higher pressures denoted by yellow, red, and 
pink along the forward region of the wing and between the LEX vortex pressure footprints.  A 
dominant feature of the PSP image are the broader bands of blue and purple color extending inboard 
from the wing leading edges, which are associated with the wing vortical flows.  The footprint of an 
oblique shock wave beginning near the apex of the centerline tail and extending outboard across the 
LEX vortex pressure signatures is also apparent.  The shock is revealed as a narrow, swept band of 
yellow and red colors extending outboard on either side of the tail.  The LEX and wing vortex pressure 
signatures are in proximity, but there is no indication of direct interaction (that is, intertwining of the 
vortices) or instability of the vortices.  It is noted that vortex instability, or breakdown, would not be 
expected at these test conditions [8] in the absence of large adverse streamwise pressure gradients 
caused, for example, by high angle of attack, a strong shock wave, or the presence of a solid obstacle in 
the path of the vortices.  The LVS images show two distinct vortex cross sections on either side of the 
wing centerline: a LEX vortex of nearly circular cross section positioned along the inboard portion of 
the wing and surrounded by a band of water vapor condensate, and a wing vortex situated along the 
outer section of the wing which appears as a broader, flatter region of low or negligible water vapor 
condensate.  The wing vortex ‘feeding sheet’ is approximately defined in the LVS images as the 
boundary between the low condensate region within the vortex and the nearly uniform condensation 
region outside the vortex.  The size of the LEX vortex cross section belies the relatively small pressure 
signature in the PSP image.  The LEX vortex is nearly circular because it is a ‘free’ vortex.  It detaches 
from the leading edge near the LEX-wing junction and does not receive additional leading-edge 
vorticity as it passes over the wing.  The condensate that is entrained between the LEX vortices implies 
a region of induced downflow that correlates with the higher pressure region in the PSP image.  The 
flatter wing vortex cross section is also consistent with the broader signature in the PSP surface 
pressure mapping.  The LVS images indicate the wing vortex is situated closer to the wing upper 
surface.  In addition, the vortex feeding sheet is attached to the entire wing leading edge.  These LVS 
flow field features correlate with the region of more intense blue and purple colors in the PSP image, 
which are indicative of higher vortex-induced suction pressures.  The LVS images also reveal the 
presence of condensation between the LEX and wing vortices, which is a region of vortex-induced flow 
that reattaches to the wing upper surface.  This reattached flow region is coded typically a green color 
in the PSP image and is situated between the boundaries of the LEX and wing vortex pressure 
footprints.  The LVS image near the wing trailing edge (x/c = 1.00) reveals the presence of the LEX, 
wing, and wing tip vortices and a trace of the centerline vertical tail shock.  The LVS result at            
x/c = 1.00 supports the inferences from the PSP image, namely, the LEX and wing vortices do not 
directly interact and the vortices are stable to the wing trailing edge.  There is no indication in the LVS 
image that the traversal of the LEX vortex across the boundary of the shock emanating from the tail 
causes instability of the vortical flow.  The PSP image in fig. 7 corresponding to the porous LEX 
features a single, broad wing vortex pressure signature on each side of the wing centerline and an 
absence of the LEX vortex pressure footprints.  In addition, regions of higher surface pressures along 
the forward and central sections of the wing and on either side of the centerline tail are less extensive, 
which suggest a mitigation of the vortex-induced downflow and a reduction of the shock strength at the 
tail.  Certain trends in the PSP image correlate with the corresponding LVS images, which indicate that 
LEX porosity shifts the dominance from the LEX vortex to the wing vortex.  The singular feature in the 
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LVS images is a broader, thicker wing vortex cross section compared to its solid LEX counterpart.  
There is no evidence of the LEX vortices, and the induced downflow above the center portion of the 
wing is less discernible.  No inferences can be made, however, regarding the reduced shock strength at 
the tail that was suggested in the PSP images. 
 
Fig. 8 presents expanded views of the right-hand portions of the PSP images with solid LEX and 
porous LEX shown previously in fig. 7.  The corresponding LVS flow visualization of the right half of 
the wing at x/c = 0.80 is shown directly below the PSP images.  The x/c = 0.80 station is denoted as a 
red dashed line in the PSP image.  The PSP and LVS images are scaled relative to the plots of the 
spanwise distributions of the right-hand wing upper surface static pressure coefficient, Cp, shown at the 
bottom of the figure.  Cp is plotted against the nondimensional semispan location, y/s.  Two 
distributions are shown in each plot corresponding to discrete pressure measurements obtained using 
the ESP system and from the PSP image which was calibrated via the global in-situ method.  The dual 
vortex pressure footprints and vortex cross sections with the solid LEX correlate with the two pressure 
signatures in the Cp distributions.  One might infer from the relative size of the LEX vortex in the LVS 
image that the latter would induce a higher suction pressure peak compared to the wing vortex.  This is 
not the case, however, as the PSP pressure map and Cp distributions indicate the LEX vortex induces a 
minor suction pressure peak compared to the higher suction pressure plateau induced by the broader, 
flatter wing vortex.  The Cp distribution obtained with the porous LEX is shown at the bottom right in 
fig. 8, which captures a single suction pressure plateau along approximately the outer 60 percent of the 
wing semispan and an inboard region of increasing pressure (that is, reduced suction pressure).  The 
lateral extent of the suction pressure plateau in the presence of the porous LEX correlates with the 
broadened vortex pressure signature and vortex cross section in the PSP and LVS images, respectively.  
In addition, the region of wing vortex-induced flow reattachment inferred from the PSP and LVS 
images is consistent with the pressure rise inboard of the suction pressure plateau. 
 
Many details of the flow about the 65-degree cropped delta wing can be derived from the combined 
results obtained using the PSP and LVS techniques.  However, results presented so far in fig. 7 and   
fig. 8 do not clearly identify the effect of flow-through porosity on the LEX vortex system.  A 
technique often used in wind tunnel flow visualization experiments is to perform an angle-of-attack 
‘sweep’ from low-to-high values to observe, for example, the development and growth of vortices, 
vortex interactions, and shock waves.  Frequently, the enlarged scale of the flow at higher angles of 
attack allows one to better discern flow-field features of interest that still exist but are less visible at 
lower angles of attack.  This approach could not be adopted using the PSP method in the UPWT 
testing, since the optical access required the model to be oriented in a wings-vertical position in the test 
section and the angle of attack was limited by mechanical operation of the support system to 
approximately +8 degrees in this orientation.  LVS flow visualization was performed with the model in 
the standard wings-horizontal orientation, and the support system was capable of pitching the model to 
angles of attack significantly higher than 8 degrees in this plane of motion.  Blockage considerations 
and balance instrumentation load limits at M = 1.6 precluded angles of attack greater than 
approximately 12 degrees.  However, these constraints were eased at M = 2.1 where the flow-field 
features were topologically similar to M = 1.6 [2].  Fig. 9 shows the LVS cross-flow patterns at           
M = 2.1, α = 16o, and x/c = 0.80 with the solid LEX and porous LEX.  At this higher angle of attack, 
the LEX and wing vortices are visible in both cases.  With the solid LEX, the vortices are distinct and 
separated, and multiple cross-flow shock waves develop above, between, and below the vortices.  With 
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the porous LEX, the identities of the LEX and wing vortices can still be discerned, but the vortices join 
to produce a cross flow pattern that is characteristic of a single, broader vortical flow.  The LVS image 
also suggests the combining of the vortices changes the pattern of cross-flow shocks that bound the 
vortex flows.  These results confirm that porosity does not suppress the LEX vortex flows but, instead, 
causes a diffusion and weakening of the vortices.  The phenomena observed at this higher angle and 
Mach number are expected to exist, albeit to a smaller scale, at the conditions previously shown in    
fig. 7 and fig. 8.  Specifically, the redistribution of the PSP surface pressure response, the LVS cross-
flow patterns, and the static pressure coefficient distributions caused by porosity is induced by diffuse, 
weakened LEX vortices that have combined with stronger and larger wing vortical flows.  It is noted 
that a similar conclusion would likely not have evolved with the exclusive use of the PSP method. 
 
Fig. 10 shows the PSP surface pressure maps and LVS cross-flow images at M = 1.6 and α = 8o 
corresponding to the solid LEX in combination with the centerline vertical tail (depicted on the left) 
and with twin, wing-mounted vertical tails (depicted on the right).  The LVS images were acquired at 
x/c = 0.60, 0.80, and 1.10, where the latter station is in the near wake of the wing.  The centerline and 
twin vertical tails are positioned downstream of the 80 percent wing chord station, and, their upstream 
influence at supersonic speeds is limited to disturbances transmitted through the wing boundary layer.  
As a result, the PSP surface pressure response and LVS cross-flow patterns forward of the tail positions 
are similar for both tail arrangements, and significant differences are confined to the local regions about 
the tails and into the near wake.  As noted previously in fig. 7, the signature of a shock emanating from 
the apex region of the centerline tail is apparent in the PSP image, and this shock intersects the pressure 
footprints of the LEX vortices.  The LVS cross-flow pattern at x/c = 1.10 reveals the tail shock, which 
has no apparent effect on the stability of the LEX or wing vortices.  A direct interaction of the wing and 
LEX vortices occurs in the near wake.  The wake roll-up and wing tip vortex are also apparent in the 
LVS image at this station.  The PSP and LVS images are more complex in the vicinity of the twin 
vertical tails.  The PSP surface pressure response shows the LEX vortex footprints intersecting the 
leading edges of the wing-mounted tails.  Downstream of this location, the LEX vortex pressure 
footprints are no longer visible in the PSP image.  A strong, intersecting shock system is established 
between the twin tails, and a rapid pressure rise across the shocks is indicated in the PSP image by the 
transition from a green color ahead of the shocks, to yellow near the foot of the shocks and, finally, to 
shades of red and pink downstream of the shock fronts.  It is noted that the PSP color display was 
adjusted during the image processing in an attempt to clearly show the important features in the surface 
pressure response.  In doing so, the paint intensity response in certain small sections of the PSP image 
would sometimes exceed the extremes of the available color palette, and these saturated regions appear 
as white or black in the images.  The PSP response outboard of the twin tails reveals a swept band of 
blue and purple colors, which suggests a region of organized flow separation (that is, vortex flows).  
Outboard of this region, the higher suction pressures induced by the wing leading-edge vortex are 
manifested as a broad band of blue and purple colors.  The LVS image at x/c = 1.10 enhances the 
interpretation of the PSP image.  Interestingly, although the PSP image suggests the LEX vortices 
directly impinge on the vertical tails, the LVS flow visualization shows that the LEX vortices retain 
their structure and stability into the near wake, even as they traverse through the higher pressure region 
established downstream of the twin tail shock system.  The central region of the LEX vortex is shown 
as a dark area at about the tail midspan on the inboard side of each vertical tail.  The traces of the tail 
shocks are also evident in the LVS cross-flow pattern.  The LVS image confirms the development of a 
separated flow region containing low or negligible water vapor condensate situated outboard of the 
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twin tails.  The cross flow induced by the LEX vortices at the tails, in combination with the tail 
leading-edge sweep angle of approximately 45 degrees, may be sufficient to promote a partial-span 
vortical flow positioned near the junction of the tail and wing upper surface.  The presence of this 
separated flow region limits the inboard lateral growth and movement of the wing leading-edge vortex, 
which is visible adjacent to the wing tip vortex in the LVS image at x/c = 1.10. 
 
A more detailed examination of the flow behavior in the vicinity of the right-hand wing-mounted 
vertical tail at M = 1.6 and α = 8o is provided in fig. 11.  PSP static pressure coefficients were extracted 
from two chordwise rows positioned at nondimensional semispan locations of y/s = 0.25 and y/s = 0.40 
that bounded the right-hand vertical tail.  The chordwise distributions of the PSP pressure coefficient at 
these stations are presented in the plots in the upper left-hand portion of fig. 11, where Cp is plotted 
versus the pixel number.  The first pixel in each row is the closest to the wing leading edge, and the last 
pixel in each row is closest to the wing trailing edge.  The chordwise row at y/s = 0.25 has 
approximately 742 pixels, is positioned inboard of the LEX vortex pressure footprint and the vertical 
tail, and extends through the high-pressure region downstream of the tail shock.  The chordwise row at 
y/s = 0.40 has approximately 632 pixels and is positioned outboard of the vertical tail, intersects the 
wing leading-edge vortex pressure footprint near the leading edge, and extends through the suction 
pressure region induced by the hypothesized vortex flow shed from the tail.  Both rows are identified as 
black dashed lines in the PSP image.  The chordwise location of the vertical tail apex extended to the 
two pressure rows corresponds to pixel 587 at y/s = 0.25 and pixel 477 at y/s = 0.40.  Situated directly 
below and scaled with respect to the PSP image is the corresponding LVS cross-flow pattern in the 
near wake (x/c = 1.10) of the right-hand wing and vertical tail.  The PSP pressure distribution at         
y/s = 0.25 is situated near the inboard edge of the LEX vortex pressure footprint, and the corresponding 
pressure distribution indicates a flow expansion to an approximately constant level along the main 
portion of the wing up to the region of the vertical tail.  A significant flow recompression occurs 
downstream of the oblique shock wave generated at the tail.  The estimated shock front position 
corresponds to pixel 599 at y/s = 0.25.  The rapid pressure rise corresponds to the abrupt change in the 
false-colored PSP image from green to yellow to red/pink across the shock.  The pressure row at        
y/s = 0.40 intersects the wing vortex pressure signature near the leading edge, which appears as a blue 
region in the PSP pressure map.  The pressure distribution reveals a corresponding vortex-induced 
suction pressure peak in this region.  The pressure row at y/s = 0.40 is situated between the wing and 
LEX vortex pressure footprints farther aft, and it captures a region of approximately constant pressure 
level on the wing (depicted as green in the pressure map) up to the vicinity of the vertical tail.  The PSP 
pressure map suggests the presence of a weak shock front extending outboard from the tail, which is 
consistent with the minor flow recompression shown in the pressure distribution at y/s = 0.40.  The 
superposition of a strong vortex flow field in this region reduces the shock strength, however.  Farther 
aft, the pressure distribution reveals a significant increase in the suction pressure level and a well-
defined suction pressure peak that is approximately centrally located in a region of blue and purple 
colors in the PSP pressure map.  The transition from green to blue colors at y/s = 0.40 in the PSP image 
occurs at approximately pixel 485.  The pressure distribution and false-colored pressure map in this 
region are consistent with the induced effects of a vortex flow emanating from the vertical tail.  The 
LVS image in the near wake of the wing confirms the presence of this vortex situated at the outboard 
junction of the tail and wing upper surface.  The tail vortex appears as a dark region with essentially no 
water vapor condensate surrounded by a lighter region of condensation. 
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5.2  Generic Double Delta Wing 
The PSP and LVS images obtained on the double delta wing model at M = 0.85 and M = 1.20 are 
shown in fig. 12 corresponding to α = 20o.  PSP color bars are not presented for the double delta wing 
since the intensity ratio scales and corresponding color coding were tailored to each angle of attack and 
Mach number to extract important features of the surface pressure field response.  Specification of a 
common intensity ratio scale for all angles of attack and Mach numbers would have resulted in large, 
uninterpretable white or black regions in certain images.  The comparisons of the PSP images are 
solely intended to illustrate significant qualitative differences caused by Mach number changes at the 
selected angles of attack.  In general, blue, lavender, and purple colors correspond to regions of low 
pressure (high suction pressure coefficients), whereas regions of higher surface pressures are 
represented by yellow and red colors.  A green color corresponds to an intermediate suction pressure 
level.  The LVS cross-flow patterns are presented directly below the PSP images with which they are 
associated.  LVS images obtained at x/c = 0.25, 0.75, and 0.90 are shown, where x is the distance 
measured along the model centerline beginning at the strake apex.  These locations correspond to 
pressure measurement stations where discrete pressure tap data were acquired in spanwise rows along 
the left strake and wing upper surfaces.  The PSP image at M = 0.85 reveals the pressure signature of 
the strake vortex beginning near the strake apex and extending to nearly the 90 percent chord station.  
The intensity of the strake vortex pressure signature is highest in a region beginning near the strake-
wing junction to approximately the 75 percent chord station.  This region is denoted by colors ranging 
from lavender to purple.  The vortex that is shed from the wing leading edge is stronger than the strake 
vortex [9], and it induces significant suction pressures over a portion of the wing upper surface.  
However, the vortex feeding sheet does not remain attached to the leading edge because of the 
moderate wing sweep and the induced effect of the strake vortex.  As a result, the wing vortex moves 
inboard and upward away from the surface [3], and its induced effect on the wing surface pressure field 
diminishes.  The strake vortex is no longer fed by leading-edge vorticity downstream of the strake-wing 
junction, yet its surface pressure footprint is most intense in this region.  This effect may be caused by a 
downward displacement toward the wing surface as a result of its interaction with the wing vortex.  
Downstream of approximately the 90 percent chord station, the pressure signatures of the strake and 
wing vortices are diffuse or indistinct.  This trend is consistent with the onset of vortex breakdown 
upstream of the wing trailing edge.  The presence of an apparent normal shock wave situated between 
the 75 percent and 90 percent chord stations and centered on the wing may contribute to the speculated 
vortex instability.  The shock presence is inferred from the abrupt color change from green to yellow to 
red, and the spanwise extent of the shock may be limited by a three-dimensional relief effect induced 
by the presence of strong vortical flows over the wing [10].  The LVS images at x/c = 0.25 and            
x/c = 0.75 reveal a stable ‘donut-shaped’ strake vortex cross section in proximity to the upper surface, 
which correlates with the strong pressure signature in the PSP image.  The discontinuous band of 
condensate above the vortex at x/c = 0.75 is interpreted as a discontinuity in the vortex feeding sheet.  
The wing vortex is not visible in the LVS flow visualization at M = 0.85 because of insufficient local 
condensation.  In contrast, more water vapor condensate accumulates within the strake vortex making it 
highly visible.  This may be related to the long run length along which leading-edge vorticity sheds and 
feeds into the strake vortex before it passes over the wing upper surface.  The onset of vortex 
breakdown inferred from the PSP image is confirmed in the LVS cross-flow patterns at x/c = 0.90, 
where the vortex has expanded and the core region has filled with water vapor condensate. 
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A notable transformation occurs in the PSP image at M = 1.20 relative to M = 0.85 as shown on the 
right-hand side of fig. 12.  Increasing the Mach number from 0.85 to 1.20 weakens the leading-edge 
vortices and reduces the adverse longitudinal pressure gradient through which the vortices must 
traverse [10].  Direct vortex interaction and normal shock effects that occur at the lower Mach number 
are mitigated or eliminated at the higher Mach number, and the vortices will persist in a stable form to 
higher angles of attack.  The PSP image at M = 1.20 captures distinct strake and wing vortex pressure 
signatures that persist to the wing trailing edge.  Direct interaction, or intertwining, of the strake and 
wing vortices does not occur at this Mach number.  The PSP image suggests the wing vortex feeding 
sheet remains attached to the leading edge to nearly the wing tip. Furthermore, the normal shock 
footprint observed at M = 0.85 is eliminated at M = 1.20.  The LVS cross-flow patterns at M = 1.20 are 
consistent with the trends in the PSP image and also reveal a transformation of the condensation 
patterns compared to M = 0.85.  Condensation at the higher Mach number first appears in the free 
stream, so the vortical flows are visible as dark regions in the absence of scattered light surrounded by 
a light background.  The LVS cross-flow patterns reveal a juxtaposition of stable strake and wing 
vortices.  The strake vortex is approximately circular in cross section, becoming less so further aft on 
the wing, whereas the wing vortex is a flattened, elliptically-shaped region that appears attached to the 
leading edge.  The attachment of the feeding sheet is assumed when the narrow band of condensate 
along the outer edge of the wing vortex is attached to the leading edge.  
 
Expanded views of the PSP surface pressure response on the left-hand strake and wing upper surface at 
M = 0.50 and M = 1.20 are presented in fig. 13 corresponding to α = 20o.  The corresponding LVS 
cross-flow patterns about the left-hand wing at x/c = 0.75 are also shown directly below the PSP 
images.  The PSP and LVS images are scaled relative to each other and, also, to the plots of the 
spanwise Cp distributions on the left wing at x/c = 0.75 shown at the bottom of fig. 13.  The pressure 
distributions were obtained using the ESP and PSP techniques.  Note that the Cp distributions are 
plotted to different scales at M = 0.50 and M = 1.20.  Fig. 13 provides representative results obtained at 
a lower subsonic Mach number and at a higher transonic Mach number to highlight the different flow 
topologies encountered across the range of Mach number in the 8-Foot TPT testing.  The PSP image at 
M = 0.50 and α = 20o reveals the strake vortex pressure signature highlighted in blue-to-lavender colors 
that persists just downstream of the 75 percent chord station.  The PSP intensity field response to the 
strake vortex is highest near the strake-wing intersection, where the strake vortex is drawn closer to the 
wing surface as a result of an interaction with the wing vortical flow.  The wing vortex pressure 
footprint is visible near the strake-wing intersection as a region of blue, lavender, and purple colors, but 
this footprint quickly becomes obscured as the vortex detaches from the leading edge and interacts with 
the dominant strake vortex.  Downstream of the 75 percent chord station, the intensity of the combined 
strake and wing vortex footprint diminishes, and the expanding region of yellow and red colors along 
the aft portion of the wing suggests the onset of vortex breakdown.  The LVS cross-flow image at      
x/c = 0.75 reveals a stable, donut-shaped strake vortex, which is consistent with the PSP pressure field 
response at this station.  The LVS pattern also shows a cloud of water vapor condensate outboard of 
and above the strake vortex, which is interpreted as a burst wing vortex flow, thereby obscuring the 
wing vortex footprint in the PSP image.  The flow situation inferred from the PSP and LVS images at 
M = 0.50 leads to the single-peaked pressure distribution at the bottom of fig. 13, where the spanwise 
location of the suction pressure peak correlates with the positions of the strake vortex pressure footprint 
in the PSP color mapping and the condensation pattern in the LVS image.  The significantly diminished 
suction pressure level along approximately the outer 40 percent of the local semispan is attributed to 
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the occurrence of wing vortex breakdown.  The salient features of the PSP image at M = 1.20 and        
α = 20o in fig. 13 include well-defined strake and wing vortex pressure signatures that are independent 
and persist to the wing trailing edge.  The independence of the signatures implies no direct interaction 
between the vortical flows, and from their persistence one can infer stability.  The character of the 
pressure signatures suggests the wing vortex is very broad compared to the strake vortex.  Inferences 
from the PSP image are supported by the LVS cross-flow pattern at x/c = 0.75, and the flow topology 
in the PSP and LVS images is consistent with the pressure coefficient distribution at x/c = 0.75.   The 
spanwise Cp distribution shows a pronounced suction pressure peak correlating with the location of the 
strake vortex in the PSP and LVS images and, farther outboard, a broader distribution featuring a 
maximum suction pressure plateau that correlates with the flatter, elliptically-shaped wing leading-edge 
vortex.  

5.3  Faceted Missile Model 

PSP and LVS images obtained on the faceted missile model at M = 1.20 are shown in fig. 14 
corresponding to α = 12o and α = 20o.  The size of the PSP images shown at the top of fig. 14 are 
different at the two angles of attack, since the facility arc sector support mechanism pitched the model 
closer to the PSP image acquisition camera installed in the test section ceiling as the angle of attack 
was increased from 12o to 20o.  The LVS flow visualization results correspond to M.S. 20.40, 25.50, 
and 30.00 expressed in inches measured from the nose tip of the 36-inch-long model.  Discrete pressure 
tap data were obtained in spanwise rows at these stations using the ESP method.  The LVS images are 
scaled relative to each other but not to the PSP images. 
 
The PSP intensity field response is more subtle on the faceted missile model compared to the 65-degree 
cropped delta wing-LEX and double delta wing models discussed in previous sections of this paper.  
The slender forebody, forward-swept aftbody, thick diamond-shaped cross sections, and large chine 
included angles at the leading edges diminish the strength of the vortical flows compared to the thin, 
sharp-edge, less highly-swept wings.  In addition, the slender missile model is more prone to flow-field 
asymmetries at zero sideslip angle (β), which is apparent in the PSP images particularly along the 
aftbody region.  A PSP color bar is included in fig. 14 which indicates that regions of higher suction 
pressures are coded green, blue, and purple, and regions of lower suction pressures or small positive 
pressures are represented by shades of yellow, red, and pink.  The footprints of the forebody vortices at 
α = 12o are initially discernible in the PSP image as narrow green bands along the forebody, which 
intensify to blue color along the transition section of the body.  The vortex footprints appear to widen 
along the aftbody, albeit in an asymmetric fashion relative to the model centerline, and the lighter green 
and yellow color coding is indicative of diminished influence of the vortices on the surface pressures.  
A small region of dark blue color is also apparent near the planform break, which suggests a second 
region of organized flow separation.  The off-surface flow field at α = 12o is dominated by the vortex 
pair shed from the forebody as shown in the LVS cross-flow patterns in fig. 14.  The scale of the vortex 
structure in the LVS flow visualization contrasts with the relatively subtle surface pressure signatures 
in the PSP image, particularly along the aftbody region.  A band of condensation connects each vortex 
to the body edge at M.S. 20.40, which indicates the feeding sheet is attached to the leading edge.  The 
body chine is essentially a trailing edge downstream of the planform break, and it is presumed that 
vorticity is no longer feeding into the vortex from this point aft.  Consequently, the flow about the 
afterbody section is characterized by a free vortex system.  An interesting feature of the LVS cross-
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flow patterns at M.S. 25.50 and 30.00 is the development of a second pair of smaller, co-rotating 
vortices that directly interact with the forebody vortical flows.  It is speculated that a discontinuity 
exists in the forebody leading-edge vortex shear layer upstream of the planform break.  The premature 
detachment of the forebody vortex feeding sheet from the body edge upstream of the planform break 
allows a second pair of co-rotating vortices to form along the transition region.  A strong interaction of 
the co-rotating vortices occurs along the aftbody as shown in the LVS pattern at M.S. 30.00.  The 
vortex system is no longer attached to the model via a leading-edge feeding sheet in this region and, 
therefore, it migrates away from the upper surface.  This upward displacement is a plausible 
explanation for the diminished surface pressure signature along the aft portion of the model.  The flow 
topology in the PSP and LVS images at α = 20o shown on the right-hand side of fig. 14 is similar to 
that observed at α = 12o.  Increasing the angle of attack amplifies the forebody vortex pressure 
signature and the scale of the vortex cross-flow patterns in the PSP and LVS images, respectively.  The 
LVS condensation patterns are dominated by the forebody primary vortices, and the influence of the 
second pair of co-rotating vortices is significantly diminished at the higher angle of attack.  The 
streamwise accumulation of water vapor condensate on the long slender model creates a vivid depiction 
of the vortical flows.  However, the scale and complexity of the vortex-dominated condensation 
patterns along the aftbody are incongruous with the relatively subtle features in the PSP surface 
pressure response.   
 
The PSP images and selected LVS cross-flow patterns at M = 1.20 corresponding to α = 12o and          
α = 20o in fig. 14 are expanded in fig. 15 for comparison to the upper surface static pressure coefficient 
distributions at M.S. 25.50.  Only the LVS images are appropriately scaled to the Cp distributions 
shown at the bottom of the figure.  Straightforward correlations are made between the spanwise 
locations of the forebody primary vortices and the suction pressure peaks at α = 12o and α = 20o.  The 
presence of the second pair of co-rotating vortices at α = 12o is not manifested in the pressure 
distributions, although they are clearly visible in the LVS image.  The influence of the relatively large 
regions of secondary separation denoted in the LVS image at α = 20o is associated with inflection 
points in the pressure distributions outboard of the primary vortex suction peaks. 
 
Fig. 16 shows the effect of sideslip on the PSP surface pressure response and LVS cross-flow patterns 
at M = 0.90 and α = 20o.  The forebody primary vortex pressure signatures at β = 0o appear as narrow 
bands of blue color that are symmetrically positioned along the forebody and broader bands of green 
color that are asymmetrically disposed along the rear portion of the aftbody.  A secondary region of 
locally high suction pressures is coded dark blue in the transition section of the body, which is similar 
to the pattern observed at M = 1.20 and α = 20o in fig. 14 and fig. 15.  The LVS patterns at β = 0o 
reveal a symmetric pair of forebody vortices at M.S. 20.40 and the development of a second pair of 
smaller vortices rotating in the same sense at M.S. 25.50 that is presumed to originate from the 
transition region.  The latter vortex pair is entrained into the dominant forebody vortices, and they 
appear as spiral discontinuities at the outer edge of the vortex cross-flow images at M.S. 30.00.  As a 
consequence, the presence of the co-rotating vortex pair is not manifested in the PSP image.  There is 
some evidence of vortex asymmetry at M.S. 25.50 and 30.00, where the right-hand vortex system is 
situated slightly higher above the surface.  The PSP image at β = -2.5o (nose right) in fig. 16 reveals a 
pressure signature of the left-hand, or windward, forebody vortex, which is discernible as a narrow 
band of blue and dark green colors over most of the body length.  In addition, there is a second region 
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of higher suction pressures coded dark blue/purple on the windward side along the transition region of 
the body.  In contrast, the pressure signature of the forebody vortex on the right-hand, or leeward, side 
is less visible along the forebody region and barely discernible along the aftbody.  Good qualitative 
correlation exists between the PSP and LVS images.  At M.S. 20.40, for example, the windward 
forebody vortex is close to the surface and is attached to the leading edge by a band of condensate.  The 
leeward vortex is situated farther above the surface, and there is no evidence of a feeding sheet 
connecting the vortex to the leading edge at this model station.  In sideslip, the windward vortex moves 
closer to the model surface while the leeward vortex migrates away from the surface [4].  This effect 
contributes to the higher PSP suction pressure levels on the windward side compared to the leeward 
side.  In addition, the effective decrease in the leading-edge sweep on the windward side yields a 
stronger vortex at a given angle of attack, whereas the opposite effect occurs on the leeward side [9].  
The development of a second, co-rotating vortex is apparent at M.S. 25.50 from the transition region of 
the body on the windward side.  This smaller, weaker vortex is observed to orbit about the dominant 
forebody vortex at M.S. 30.00, which remains in proximity to the model surface.  The latter trend is 
consistent with the persistence of the vortex pressure signature in the PSP image.  By comparison, the 
apparent free vortex system on the leeward side induces a more subtle pressure signature.  
 
The PSP false-colored pressure maps and the LVS images at M.S. 25.50 from fig. 16 are expanded in 
fig. 17 for comparison to the spanwise Cp distributions at M.S. 25.50 corresponding to β = 0o and        
β = -2.5o.  The LVS images are approximately scaled to their respective Cp distribution plots.  The 
locations of the bands of green/blue color in the PSP pressure map and the forebody vortex cross-flow 
patterns in the LVS image at β = 0o correlate with the suction pressure peak locations in the Cp plot at 
the bottom left of fig. 17.  The aftbody flow asymmetry noted in fig. 16 at β = 0o is manifested as a 
slight asymmetry in the magnitude of the peak Cp values.  The presence of the second pair of            
co-rotating vortices visible in the LVS cross-flow pattern does not project to the Cp plot, because of 
their spatial locations relative to the model surface and the dominance of the forebody vortices.  The 
significant asymmetries that are imposed on the PSP and LVS images due to sideslip correlate very 
well with the corresponding Cp plot at β = -2.5o at the bottom right of fig. 17.  The stronger windward 
vortex in proximity to the upper surface induces a much higher suction pressure peak compared to its 
weaker leeward counterpart that is positioned higher above the model. 

6 Summary  

Laser vapor screen flow visualization and pressure-sensitive paint techniques were applied in a tandem 
approach to investigate the vortex- and shock wave-dominated flow fields about slender wing and 
missile configurations at subsonic, transonic, and supersonic speeds.  Selected results were presented 
from experiments performed on 65-degree cropped delta wing-LEX, double delta, and faceted missile 
models in the NASA Langley Research Center Unitary Plan Wind Tunnel and the 8-Foot Transonic 
Pressure Tunnel.  The LVS technique was considered qualitative, since the appearance of condensation 
in the test section affects the free-stream flow characteristics.  The potential intrusive effects of PSP 
were mitigated by controlling the thickness and surface roughness of the luminescent paint coating.  
Within these constraints, however, the LVS cross-flow patterns were effectively projected to the false-
colored PSP surface pressure maps to identify the salient features of the aerodynamic flows about the 
selected models.  The LVS and PSP techniques were complementary in that they provided a more 
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complete depiction of the complex three-dimensional flow fields that were characterized by the 
development and interaction of multiple leading-edge vortices and shock waves, vortex breakdown, 
and vortex interactions with vertical tail surfaces.  The combination of these techniques was also a 
powerful tool in visualizing and quantifying the effects of passive surface porosity on vortex flow 
development and interactions.  The application of the LVS and PSP techniques was mutually exclusive, 
because of the different requirements for the optical components, model surface preparation, and wind 
tunnel test conditions.  Consequently, the LVS and PSP results were obtained in separate phases in 
each experiment, which required appropriate test planning and efficient use of wind tunnel facility 
resources.  The successive application of these techniques often yielded synergistic results, however, 
since certain flow features that were subtle or not discernible using one technique were often clearly 
revealed using the other. 
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Fig. 1.  Photographs of the 65-degree cropped delta wing-LEX model installed in Test 

                                            Section 1 of the NASA Langley Research Center Unitary Plan Wind Tunnel 
                                            (photograph to the right shows the model prepared for PSP testing) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a)  planview 

Fig. 2.  Details of the 65-degree cropped delta wing-LEX model (all dimensions in inches) 
                                        (B.L. = butt line, BMC = balance moment center, M.S. = model station,  
                                        MRC = moment reference center, W.L. = water line) 
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(b)  sideview with centerline vertical tail 

Fig. 2.  Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  sideview with twin vertical tails 

Fig. 2.  Concluded 
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Fig. 3.  Photographs of the double delta wing model installed in the test section of  
                                               the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel 

                  (photograph to the right shows the model prepared for PSP testing) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Planview and sideview of the double delta wing model (all dimensions in inches) 
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Fig. 5.  Photographs of the faceted missile model installed in the test sections of NASA  
             Langley Research Center wind tunnels (photograph to the right shows the 
             model in the NASA LaRC 8-Foot TPT prepared for PSP testing)  

 
 
 
 

 
Fig. 6.  Details of the faceted missile model (all dimensions in inches) 
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Fig. 7.  Comparison of PSP and LVS images on the 65-degree cropped delta wing 
                                               model with solid LEX and porous LEX at M = 1.6, α = 8o 
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Fig. 8.  Correlation of PSP and LVS images with spanwise pressure distributions on the 65-degree 

                                  cropped delta wing model with solid LEX and porous LEX at M = 1.6, α = 8o 
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Fig. 9.  Comparison of LVS images on the 65-degree cropped delta wing model 

                                                with solid LEX and porous LEX at M = 2.1, α = 16o 
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Fig. 10.  Comparison of PSP and LVS images on the 65-degree cropped delta wing model 

                                          with solid LEX and centerline and twin vertical tails at M = 1.6, α = 8o 
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Fig. 11.  Correlation of PSP and LVS images with chordwise pressure distributions on the 65-degree 

  cropped delta wing  model with solid LEX and twin vertical tails at M = 1.6, α = 8o 
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Fig. 12.  Comparison of PSP and LVS images on the double delta wing model at 

                     M = 0.85 and M = 1.20, α = 20o 
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Fig. 13.  Correlation of PSP and LVS images with spanwise pressure distributions on the double delta 

    wing model at M = 0.50 and M = 1.20, α = 20o 
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Fig. 14.  Comparison of PSP and LVS images on the faceted missile model at 
                       α = 12o and α = 20o, M = 1.20 
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Fig. 15.  Correlation of PSP and LVS images with spanwise pressure distributions on the 
              faceted missile model at α = 12o and α =  20o, M = 1.20 
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Fig. 16.  Comparison of PSP and LVS images on the faceted missile model at 
                       β = 0o and β = -2.5o, M = 0.90, α = 20o
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Fig. 17.  Correlation of PSP and LVS images with spanwise pressure distributions on the 
              faceted missile model at β = 0o and β = -2.5o, M = 0.90, α = 20o 
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